|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectnumal.lowprecision.AnalyticProblems
public class AnalyticProblems
| Constructor Summary | |
|---|---|
AnalyticProblems()
|
|
| Method Summary | |
|---|---|
static void |
marquardt(int m,
int n,
float[] parameter,
float[] rv,
float[][] v,
Function function,
float[] out)
The standard deviation of each parameter in the fit is sqrt(v[j][j] / m) and the correlation between parameter i and parameter j is v[i][j]/ sqrt(v[i][i]*v[j][j]) where i=1,...,n and j=i+1,...,n. |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
|---|
public AnalyticProblems()
| Method Detail |
|---|
public static void marquardt(int m,
int n,
float[] parameter,
float[] rv,
float[][] v,
Function function,
float[] out)
Function.computeResidualVector(int, int, float[], float[]) exceeded Function.getInvocations()Function.computeResidualVector(int, int, float[], float[]) returned falseFunction.computeResidualVector(int, int, float[], float[]) returned false when called with the initial estimates of parameter[1:n];
the iteration process was not started and so v[1:n][1:n] can't be usedFunction.getRelativeTolerance()Function.computeResidualVector(int, int, float[], float[]) necessary to attain the calculated results
Function.computeJacobian(int, int, float[], float[], float[][]) had to be madeBasic.mulcol(int, int, int, int, float[][], float[][], float),
Basic.dupvec(int, int, int, float[], float[]),
Basic.vecvec(int, int, int, float[], float[]),
Basic.matvec(int, int, int, float[][], float[]),
Basic.tamvec(int, int, int, float[][], float[]),
Basic.mattam(int, int, int, int, float[][], float[][]),
LinearAlgebra.qrisngvaldec(float[][], int, int, float[], float[][], float[]).
m - sample points used in the fittingn - number of parameters, must be less than or equal to mparameter - input: initial approximation to the set of parameters output: parameters producing a least square fitrv - 1xm vector output : residual vector obtained with current value of unknownsv - nxn matrix output : inverse of matrix J^T J where J denotes the transpose of the matrix of partial derivatives dg[1..m]/dp[1..n]function - residual vector of a given function, jacobian and options such as precision and maximum number of iterationsout - an array of 7 output values (see description above)
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||