numal.lowprecision
Class AnalyticProblems

java.lang.Object
  extended by numal.lowprecision.AnalyticProblems

public class AnalyticProblems
extends Object


Constructor Summary
AnalyticProblems()
           
 
Method Summary
static void marquardt(int m, int n, float[] parameter, float[] rv, float[][] v, Function function, float[] out)
          The standard deviation of each parameter in the fit is sqrt(v[j][j] / m) and the correlation between parameter i and parameter j is v[i][j]/ sqrt(v[i][i]*v[j][j]) where i=1,...,n and j=i+1,...,n.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

AnalyticProblems

public AnalyticProblems()
Method Detail

marquardt

public static void marquardt(int m,
                             int n,
                             float[] parameter,
                             float[] rv,
                             float[][] v,
                             Function function,
                             float[] out)
The standard deviation of each parameter in the fit is sqrt(v[j][j] / m) and the correlation between parameter i and parameter j is v[i][j]/ sqrt(v[i][i]*v[j][j]) where i=1,...,n and j=i+1,...,n. // http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=C4304 Dependencies: Basic.mulcol(int, int, int, int, float[][], float[][], float), Basic.dupvec(int, int, int, float[], float[]), Basic.vecvec(int, int, int, float[], float[]), Basic.matvec(int, int, int, float[][], float[]), Basic.tamvec(int, int, int, float[][], float[]), Basic.mattam(int, int, int, int, float[][], float[][]), LinearAlgebra.qrisngvaldec(float[][], int, int, float[], float[][], float[]).

Parameters:
m - sample points used in the fitting
n - number of parameters, must be less than or equal to m
parameter - input: initial approximation to the set of parameters output: parameters producing a least square fit
rv - 1xm vector output : residual vector obtained with current value of unknowns
v - nxn matrix output : inverse of matrix J^T J where J denotes the transpose of the matrix of partial derivatives dg[1..m]/dp[1..n]
function - residual vector of a given function, jacobian and options such as precision and maximum number of iterations
out - an array of 7 output values (see description above)