|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectnumal.lowprecision.AnalyticProblems
public class AnalyticProblems
Constructor Summary | |
---|---|
AnalyticProblems()
|
Method Summary | |
---|---|
static void |
marquardt(int m,
int n,
float[] parameter,
float[] rv,
float[][] v,
Function function,
float[] out)
The standard deviation of each parameter in the fit is sqrt(v[j][j] / m) and the correlation between parameter i and parameter j is v[i][j]/ sqrt(v[i][i]*v[j][j]) where i=1,...,n and j=i+1,...,n. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public AnalyticProblems()
Method Detail |
---|
public static void marquardt(int m, int n, float[] parameter, float[] rv, float[][] v, Function function, float[] out)
Function.computeResidualVector(int, int, float[], float[])
exceeded Function.getInvocations()
Function.computeResidualVector(int, int, float[], float[])
returned falseFunction.computeResidualVector(int, int, float[], float[])
returned false when called with the initial estimates of parameter[1:n];
the iteration process was not started and so v[1:n][1:n] can't be usedFunction.getRelativeTolerance()
Function.computeResidualVector(int, int, float[], float[])
necessary to attain the calculated results
Function.computeJacobian(int, int, float[], float[], float[][])
had to be madeBasic.mulcol(int, int, int, int, float[][], float[][], float)
,
Basic.dupvec(int, int, int, float[], float[])
,
Basic.vecvec(int, int, int, float[], float[])
,
Basic.matvec(int, int, int, float[][], float[])
,
Basic.tamvec(int, int, int, float[][], float[])
,
Basic.mattam(int, int, int, int, float[][], float[][])
,
LinearAlgebra.qrisngvaldec(float[][], int, int, float[], float[][], float[])
.
m
- sample points used in the fittingn
- number of parameters, must be less than or equal to mparameter
- input: initial approximation to the set of parameters output: parameters producing a least square fitrv
- 1xm vector output : residual vector obtained with current value of unknownsv
- nxn matrix output : inverse of matrix J^T J where J denotes the transpose of the matrix of partial derivatives dg[1..m]/dp[1..n]function
- residual vector of a given function, jacobian and options such as precision and maximum number of iterationsout
- an array of 7 output values (see description above)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |